Reg.	No
Nam	3

B.TECH. DEGREE EXAMINATION, MAY 2008

Seventh Semester

Branch: Computer Science and Engineering

THEORY OF COMPUTATION (R)

(2002 Admission onwards)

[Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 4 marks.

- 1. Differentiate Deterministic and Non-Deterministic Automata.
- 2. What is primitive recursive function?
- 3. Show that $\sum_{i=0}^{\infty} i = \frac{n(m+1)}{2}$ by induction.
- 4. State pumping lemma for content free languages.
- 5. Construct automata to accept $1(1+0)^* + \alpha(a+b)^*$.
- 6. What is the acceptance concept of Push Down Automata?
- 7. Explain two normal forms of content free grammar.
- 8. Explain Church's Thesis.
- 9. Cite example for NP hard problem.
- 10. What is a multi-head Turing Machine?

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.

Each question carries 12 marks.

- 11. (a) For any finite set A, $|2^{A}| = 2^{|A|}$, is cardinality of any power set A is 2 raised to a power equal to cardinality of A.
 - (b) Explain algorithm for the minimizing of a DFA.

Or

12. (a) Construct DFA for the language given by

 $L = ((a + b)^* ab (a + b)^*) \cap L^1 ((ab)^*)$

- (b) Explain Chomsky classification.
- 13. (a) Design a minimum state FSA to recognize the expression (111/000)* 0.
 - (b) Show that $(0^{n/n}$ is prime) is not content free.

Turn over

2

G 2345

Or

14. (a) Is the language $\{0^m/1^n\ 0^{m+n/m} \ge 1 \text{ and } m \ge 1\}$ is regular? Praise the answer.

- (b) Construct automaton that accepts language $S \to aA$, $A \to abB/b$, $B \to aA/a$.
- 15. (a) Construct PDA for the language L = $\{x \in (a, b)^* / n_a(x) > n_b(n)\}$.
 - (b) Explain applications of PDA.

Or

- 16. Construct PDA equivalent to the grammar $S \rightarrow aAA$, $A \rightarrow aS/bS/a$.
- 17. Construct a Turing Machine that accept the Language given by $\{WW^R / W \text{ is in } (0 + 1)\}$.

Or

- 18. Explain Universal Turing machine and explain its applications.
- 19. Prove that Travelling Sales Man's Problem (TSP) is NP-complete.

Or

20. Show that the halting problem is undecidable.

 $(5 \times 12 = 60 \text{ marks})$

7x5=15 5x5=25 12x5=60