Reg No.:_____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree Regular Examination December 2024 (2024 Scheme)

Course Code: GBPHT121 Course Name: PHYSICS FOR ELECTRICAL SCIENCE

Max. Marks: 60

Duration: 2 hours 30 minutes

PART A

	(Answer all questions. Each question carries 3 marks)	CO	Marks
1	Define fermi energy. Give the significance of fermi level.	CO 1	(3)
2	Distinguish between intrinsic and extrinsic semiconductors.	CO 1	(3)
3	Write a short note on semiconductor laser.	CO 2	(3)
4	Explain stringing of solar cells.	CO 2	(3)
5	What are dielectric materials? Give 2 examples.	CO 3	(3)
6	Superconductors are perfect diamagnets. Justify.	CO 3	(3)
7	Distinguish between spontaneous emission and stimulated emission.	CO 4	(3)
8	Mention any 6 applications of optical fibres.	CO 4	(3)

PART B

(Answer any one full question from each module, each question carries 9 marks)

Module -1

9	a)	Derive diode equation.	CO 1	6
	b)	At what temperature, the probability of a state to be occupied by an electron is 2 %. Given that the energy of the state is 0.1eV above the fermi level.	CO 1	3
10	a)	Derive an expression for density of holes in valence band of an intrinsic semiconductor.	CO 1	6
	b)	Calculate the intrinsic carrier concentration for silicon at 300 K with a band gap of 1.1 eV. Given m $_n$ * = 0.12 m $_e$ and m $_p$ * = 0.28 m $_e$	CO 1	3
		Module -2		
11	a)	Explain the working and VI characteristics of a tunnel diode.	CO 2	6
	b)	In a centre tap full wave rectifier each diode has an internal resistance of 10Ω . The transformer rms secondary voltage from centre tap to each end of secondary is 50 V and load resistance is 980 Ω . Find mean load current and	CO 2	3

rms value of load current.

03GBPHT121122405

12	a)	Explain the working of a solar cell and draw its IV characteristics. Define fill factor and efficiency.	CO 2	6			
	b)	Calculate the band gap energy of the semiconductor material used in an LED which emits light of wavelength 654 nm .	CO 2	3			
Module -3							
13	a)	Derive Clausius- Mossotti relation.	CO 3	6			
	b)	If the electric field strength inside two parallel plates of a capacitor is 10 ⁴ V/m due to a dielectric medium of dielectric constant 3, find the polarisation vector. $\varepsilon_{0=}8.85 \times 10^{-12} C^2/Nm^2$	CO 3	3			
14	a)	Define superconductivity, critical field and critical temperature. Write the relation connecting critical field and critical temperature.	CO 3	6			
	b)	Explain any 3 applications of superconductors.	CO 3	3			
Module -4							
15	a)	Write short note on population inversion, pumping, metastable state and optical resonator in a laser system.	CO 4	6			
	b)	Briefly explain any three applications of laser.	CO 4	3			
16	a)	With the help of neat block diagram explain a typical fibre optic communication system.	CO 4	6			
	b)	The refractive index of core and cladding for a step index fibre are 1.53 and 1.39 respectively. Find its numerical aperture and acceptance angle.	CO 4	3			
