Reg No.:____

Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree Regular Examination December 2024 (2024 Scheme)

Course Code: GYMAT101

Course Name: MATHEMATICS FOR ELECTRICAL SCIENCE - 1 / **PHYSICAL SCIENCE - 1**

Max. Marks: 60

Duration: 2 hours 30 minutes

PART A

	(Answer all questions. Each question carries 3 marks)	CO	Marks
1	Find the rank of the matrix $\begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & -2 \\ 2 & 4 & -3 \end{bmatrix}$	CO 1	(3)
2	Find the eigen values and eigen vectors of $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$	CO 1	(3)
3	Show that $y_1 = e^{-2x}$, $y_2 = e^{3x}$ are linearly independent	CO 2	(3)
4	Solve: $y'' + 3y = 0$	CO 2	(3)
5	Find $L[e^{2t} + 4t^3 - 2\sin 3t]$	CO 3	(3)
6	Find $L^{-1}\left[\frac{s^2-3s+4}{s^3}\right]$	CO 3	(3)
7	If $f(x)$ is a periodic function with period 2π in the interval $-\pi < x < \pi$, write the Euler's formula to find a_0, a_n and b_n .	CO 4	(3)
8	Expand $f(x) = e^x$ as a Maclaurin's series	CO 4	(3)

03GYMAT101122402

PART B

(Answer any one full question from each module, each question carries 9 marks)

Module -1

9 Find the value of μ for which the system of equations x + y + z = CO 1 (9)
1, x + 2y + 3z = μ, x + 5y + 9z = μ² is consistent. For each value of μ obtained, find the solutions of the system.

10 Diagonalize:
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$
 CO1 (9)

Module -2

11 Solve using the method of variation of parameters: $y'' - y = x^2$ CO 2 (9)

- 12 a) Solve the initial value problem: y'' + 4y = 0, y(0) = 4, y'(0) = CO 2 (5) 2.
 - b) Using the method of undetermined coefficients, solve y'' + 3y' + CO 2 (4) $2y = 12x^2$.

Module -3

13 a) Use Laplace transforms, solve y'' + 5y' + 6y = 0, y(0) = CO3 (5) 0, y'(0) = -1.

b) Find
$$L^{-1}\left[\frac{2s+1}{s^2+2s+5}\right]$$
 CO3 (4)

14 a) Using Convolution theorem, find $L^{-1}\left[\frac{1}{s(s^2+4)}\right]$ CO3 (5)

b) Find
$$L[f(t)]$$
, where $f(t) = \begin{cases} t - 1, 1 < t < 2 \\ 3 - t, 2 < t < 3 \end{cases}$ CO3 (4)

03GYMAT101122402

Module -4

15 Find the Fourier series expansion of $f(x) = x^2 - 2$ in the interval CO4 (9) -2 < x < 2.

16 Obtain the Half-range Fourier cosine series of $f(x) = xin(0, \pi)$. CO4 (9)

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$