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PEPS 206.2 POWER SYSTEM PLANNING AND RELIABILITY (ELECTIVE-III) 
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Answer any five questions. 
All questions carry equal marks. 

 
1. (a) Discuss the objectives of planning in power systems. Describe long and short term planning. 

              [10 Marks] 
 
   (b) What are the basic characteristics of loads?          [10 Marks] 
 
2. (a) Describe the methodology of forecasting in detail.         [8 Marks] 
   
   (b) Forecast the peak load in 2015 using a linear characteristic.          [12 Marks] 
 
 Year   2009 2010 2011 2012 2013 2014  
 
 Peak Demand (MW)     71    72        79      81       90       93 
 
3. (a) How will you determine the reliability in series and parallel systems?     [10 Marks] 
    
   (b) Explain the probability models for generating units and loads.   [10 Marks] 
 
     
4. (a) Evaluate the reliability of the following system.     [10 Marks] 

 
 Ra=0.9   Rb=0.96 Rc=0.99 Rd=0.8  Ps=0.92 Rs=0.98 

(b) Assume a generating system consisting of the following machines with their associated outage 
rates. 

 
 MW  Outage rate 
 
 10  0.02 
 10  0.02 
 10  0.02 
 10  0.02 
   5  0.02  



 
Compute the probability outage table for the first four units.    [10 Marks] 

  
    
5. (a) Describe how transmission system reliability can be analyzed.    [10 Marks] 
    
   (b) Describe with a typical example the frequency and duration method.  [10 Marks] 
 
 
6. (a) Give a short note on two plant style load system.           [8 Marks] 
    
   (b) Two power systems are interconnected by a 20 MW tie-line. System A has three 20 MW 

generating units with forced outage rates of 10%.  System B has two 30 MW units with forced 
outage rates of 20%. Calculate the LOLE in system A for one-day period, given that the peak 
load in both system A and system B is 30 MW.      [12 Marks] 

 
 
7. Write short notes on the following. 
 

(a) Loss of load approach         [7 Marks] 
(b) Frequency and duration approach       [7 Marks] 
(c) Multiple bridge equivalents        [6 Marks] 

 
               [5 x 20 = 100 Marks] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. (a) Discuss the objectives of planning in power systems. Describe long and short term 
planning.              [10 Marks] 

 
Ref : 1) “Power System Reliability, Safety and Management”, Balbir Singh Dhillon, Ann  Arbor                
Science, -Page 147 
         2)  “Power System Planning”, R.L.Sullivan, McGraw-Hill,  -Page 18 
 
Power system planning is a fundamental topic; not to be confused with power system expansion 
planning.  Power system expansion planning is a subset of power system planning. 
 
The main objectives of power system planning are  

i) To maintain future power generation and transportation costs. 
ii) To increase the electric power system reliability according to specified conditions; system 

planning should be accomplished so that power system reliability is increased within the 
specified voltage and frequency required by the consumer. 

iii) To predict the future electric energy requirements. This is often referred to as load 
forecasting. 

iv) To plan for future electric power systems. 
 
 
1.  (b) What are the basic characteristics of loads?        [10 Marks] 
 
Ref : 1) “Power System Planning”, R.L.Sullivan, McGraw-Hill, -Page 18 
 
Electrical loads are broadly classified into 

1) Residential 
Residential customers use energy for domestic purposes. 
Residential customers can be subdivided into rural and urban categories. 
 

2) Commercial 
Commercial customers use energy for business and trade purposes. 
 

3) Industrial 
Industrial customers use energy for manufacturing and value-added services; beginning from 
primary and Greenfield projects right up to the finishing stage. 
 

4) Others ( Municipalities, Boards, Public authorities) 
This category of customers such as city corporations uses energy for street/highway lighting, 
public utility purposes, such as pumping water. 
 

 Characteristics of loads 
 
Residential category 
 
Has the most constant annual growth rate. 
Widespread usage of weather sensitive loads such as space heaters, water heaters, air 
conditioners and refrigerators. 
Has the most seasonal fluctuations. This is responsible for the seasonal variations in the 
system peak load. 
System load patterns will be dependent upon the per capita consumption due to increase in 
weather sensitive residential loads. 
Affected by demographic patterns. 
Affected by economic patterns. 
 

 
Commercial customers 



Widespread usage of weather sensitive loads such as space heaters, water heaters, air 
conditioners and refrigerators. 
Introduction of new modes of transport, eg: hybrid vehicles, Mass Rapid Transit (MRT), etc. 
will have a pronounced effect upon future load trends. 
Affected by demographic patterns. 
Affected by economic patterns. 
 
Industrial customers 
These are considered to be base loads that are independent of weather variations. 
However, depending on the specific type of industry, they may have specific characteristics. 
Eg : Auto ancillary industries, open-cast mining industry.  
 
 
 
Others ( Municipalities, Boards, Public authorities) 
 
May have seasonal fluctuations depending on specific cases. 
Growth trend for this segment is generally stable. 
 

2. (a) Describe the methodology of forecasting in detail.        [8 Marks] 
 
Ref : 1) “Power System Reliability, Safety and Management”, Balbir Singh Dhillon, Ann Arbor     
Science, -Page 148-150 
          2) “Power System Planning”, R.L.Sullivan, McGraw-Hill, -Page 24-25 
 
 
Forecasting is a systematic procedure for quantitatively defining future loads. Depending on time-
period of interest, load forecasting may be classified into 

a) Short-term 
b) Intermediate 
c) Long-term 

 
Electric system planning being our basic concern and since planning for the addition of new 
generation, transmission and distribution facilities must begin 4-10 years ahead of the 
scheduled events, medium-range / intermediate load forecasting is of more practical interest.   
 
Classification-1 
Depending on the specific mathematical method being adopted, load forecasting may also be 
classified into 
 
a) Extrapolation 
b) Correlation 
c) A combination of the above 

 
 

Classification-2 
They may also be classified into 
 
a) Deterministic 
b) Probabilistic 
c) Stochastic 

 
Since Classification-1is of more practical interest, Classification-1 is expanded further. 
 

1. Extrapolation 



Extrapolation techniques involve fitting trend curves to basic historical data adjusted to reflect 
the growth trend. With a trend curve, the forecast is obtained by evaluating the trend curve 
function at the desired future point. The methods are quite simple, producing reasonably 
accurate results. These techniques are essentially deterministic extrapolations, since random 
errors in the data or analytical model are not accounted for. Some of these are listed below. 

 
a) Straight line – linear y=a + bx 
b) Parabolic   y = a + bx + cx2  
c) S-Curve   y = a + bx + cx2 +  dx3 
d) Exponential  y = cedx 
e) Gompertz  y= Ln-1 (a + cedx) 

In all the above curve fitting techniques, the method of least squares is commonly used to 
determine the coefficients a,b,c & d, as the case may be. 
 

2. Correlation 
Correlation techniques of forecasting relate system loads to various demographic and 
economic factors. The approach is advantageous in forcing the forecaster to understand 
clearly the relationship between load growth patterns and other measurable factors. The most 
obvious disadvantage is the need to forecast demographic and economic factors, which can be 
more difficult than forecasting system load. Typically, factors such as population, 
employment, building permits, appliance saturation, business indicators, weather data, etc. are 
used in correlation techniques. 

 
   
   2.(b) Forecast the peak load in 2015 using a linear characteristic.        [12 Marks] 
 
 Year         2009  2010  2011  2012  2013 2014  
 
 Peak Demand (MW)    71     72       79     81      90      93 
 

If we apply linear regression, Y = aX + b 
    Where Y = peak demand (MW) 
     X = measure of year 
 

We could have taken X to be the year itself. However this will entail more numerical 
calculation. Hence the given table is modified as follows. 

 
Year 2009 2010 2011 2012 2013 2014 
X 1 2 3 4 5 6 

 
Theory of linear regression 
 

 



 
  
Corresponding to point (x2,y2), the error in y is equal to e2. 
   e2 =  y2 – y =  y2 – (ax2 + b)  = (y2 – ax2 – b) 
 
Hence the total error = E 
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From the modified table, we have 
 
Year 2009 2010 2011 2012 2013 2014 
X 1 2 3 4 5 6 

 
 

21ix  ;  n=6; 486iy  ; 
2 91ix  ; 1784i ix y   

 
Using equations (1) and (2) 
 
21a+6b=486  -(2) 
 
91a+21b=1784  -(1) 
 



486 21 1784 91
6 21

a ab  
   

 
81-3.5a=84.952-4.333a 
 
(4.333-3.5)a-84.952-81 
 
0.833a-3.952 
 
A=4.744 b=64.396 
 
y=ax+b=4.744x+64.396 
 
Hence to obtain the demand forecast for  the year 2015(x=7) 
 
 
y=(4.744*7)+64.396=97.6MW 
 
   
3. (a) How will you determine the reliability in series and parallel systems?   [10 Marks] 
 
Ref : 1) “Power System Reliability, Safety and Management”, Balbir Singh Dhillon, Ann Arbor     
Science, -Page -Page 57, 62 
          2) “Reliability Modeling in Electric Power Systems”- J.Endrenyi, Wiley-39, 41 
 
Series network 
 

 
 
This is the simplest reliability configuration encountered. A series system is shown below. All the 
components must function successfully for system success. In other words, if any system component 
fails, the series system fails. 
 

sR  = Network reliability 

sR = Prob. (A1.A2.A3………Am) 
Where Aj = Event that the jth component of the series system is functioning normally (for 
j=1,2,3,…….,m) 
Prob. (A1.A2.A3………Am) represents the probability of success events(.) or (intersection of) 
success events(.) 
m= no. of components 
 
For statistically independent events, the above equation reduces to  

sR = Prob.(A1).Prob.(A2). Prob.(A3)……..Prob.(Am). 
For P(Aj) = Rj  , sR= R1.R2.R3…………Rm,   sR = ∏ Rj 
Where Rj = jth component reliability 
 
 

 
 



 
 
 

Parallel network 
 

 
 
 

This is a well known configuration used to improve system reliability. All the units of the network are 
assumed to be active. At least one parallel unit of the network is required for system success. In other 
words, the system will be successful if at least one network unit is operating successfully. The failure 
probability of the network shown above is given by 

 
pR  = Network reliability 

pF  = Network unreliability = 1- pR  

pF = Prob.( 1 2 3. . ........... mA A A A ) 
 Where jA = event that the ith component of the parallel system is not functioning ( for i =1,2,3,….m) 
m= no. of components 
 Prob. ( 1 2 3. . ........... mA A A A ) represents the probability of failure events(.) or (intersection of) failure 
events(.) 
In the case of statistically independent events, the above equation reduces to 
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Where 1 2, ,...... mR R R represent the individual component reliabilities. 
When all the components are identical, 1 2 ...... mR R R R     
Then  pR = 1- (1 )mR  
 
    
 3(b) Explain the probability models for generating units and loads.  [10 Marks] 
 
Ref: 1) Reliability evaluation of power systems – Billinton & Allan, Plenum Press-Pg.20 



 
   
The basic approach to evaluating the adequacy of a particular generation 
configuration is fundamentally the same for any technique. It consists of three parts 
as shown in Fig. 2.1. 
The generation and load models shown in Fig. 2.1 are combined (convolved) 
to form the appropriate risk model. The system representation in a conventional study is 
shown in Fig. 2.2. 
 

 
2,2 The generation System model 
2.2.1 Generating unit unavailability 
The basic generating unit parameter used in static capacity evaluation is the 
probability of finding the unit on forced outage at some distant time in the future. 
This probability was defined in Engineering Systems as the unit unavailability, and 
historically in power system applications it is known as the unit forced outage rate 
(FOR). It is not a rate in modern reliability terms as it is the ratio of two time values. 
As shown in Chapter 9 of Engineering Systems, 

 



where X = expected failure rate 
u = expected repair rate 
m = mean time to failure = MTTF = I/A. 
r = mean time to repair = MTTR = 1/u 
m + r= mean time between failures = MTBF = l/f 
/= cycle frequency = l/T 
T= cycle time = l/f. 
The concepts of availability and unavailability as illustrated in Equations 
2.1 (a) and (b) are associated with the simple two-state model shown in Fig. 2.3(a). 
This model is directly applicable to a base load generating unit which is either 
operating or forced out of service. Scheduled outages must be considered separately 
as shown later in this chapter. 
In the case of generating equipment with relatively long operating cycles, the 
unavailability (FOR) is an adequate estimator of the probability that the unit under 
similar conditions will not be available for service in the future. The formula does 
not, however, provide an adequate estimate when the demand cycle, as in the case 
of a peaking or intermittent operating unit, is relatively short. In addition to this, 
the most critical period in the operation of a unit is the start-up period, and in 
comparison with a base load unit, a peaking unit will have fewer operating hours 
and many more start-ups and shut-downs. These aspects must also be included in 
arriving at an estimate of unit unavailabilities at some time in the future.  
 

 
The difference between Figs 2.3(a) and 2.3(b) is in the inclusion of the 'reserve 
shutdown' and 'forced out but not needed' states in Fig. 2.3(b). In the four-state 
model, the 'two-state' model is represented by States 2 and 3 and the two additional 
states are included to model the effect of the relatively short duty cycle. The failure 



to start condition is represented by the transition rate from State 0 to State 3. 
Load model 
Ref : “Reliability Modeling in Electric Power Systems”- J.Endrenyi, Wiley JE – Pg-194 
The bus loads change continuously and so does the resultant system load. As a consequence, a given 
system state may represent success for one load condition and system failure for another. A line 
outage during which some other line becomes overloaded at high-load periods may not have the same 
effect when the loads are low. In general, a probability  can be assigned to a system which is defined 
as iq = P[System failure|system is in state i] 

Thus iq indicates the proportion of time for which state I is a system failure state. If the state I is split 

into two sub-states, one successful and the other failed (Fig. 3.1), iq  can be expressed in terms of the 

transition rates Li  and Li  as Li
i
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   Fig.3.1 

 
The system failure probability FP is now expressed as F i i
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iq , Li  and Li  need to be determined for the various states. These values depend on the load model 
employed. Two such load models are of importance. 
In the first model, the bus loads are assumed to be independent. In the second, they are fully 
correlated (changing simultaneously and in the same proportion). 
The second model is shown in Fig.3.2. Here, the load curve is represented.

 
The curve L(t) is the load curve, given in p.u values. The cycle time Tc represents one day. For any 
state I, one can define a load level Ki, such that if the system load exceeds it, the system is failed in i. 

However, if L < Ki, the system is working in i. If the mean of the durations 
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The diagram in Fig.3.1 can now be converted into a simple load model for state I, as shown in 
Fig.3.3. 
 

 
The rates Li  and Li  are given by 
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4. (a) Evaluate the reliability of the following system.    [10 Marks] 

 
Ra=0.9   Rb=0.96 Rc=0.99 Rd=0.8  Ps=0.92 Rs=0.98 
 
We assume that the given values indicate the reliabilities of the individual units. 
 

 
 

For a series system      For a parallel system 
 

 
 



 
*a bR R R      {1 [(1 )*(1 )]}a bR R R     

 
Hence for the given system 
 

 

 

 
 

 
 

 

 
 



4 (b) Assume a generating system consisting of the following machines with their 
associated outage rates. 

 
 MW  Outage rate 
 
 10  0.02 
 10  0.02 
 10  0.02 
 10  0.02 
   5  0.02  
 

Compute the probability outage table for the first four units.  [10 Marks] 
 
For a general case, we consider all the units = (4*10 MW) + (1*5 MW) 
 
Considering (4 x 10 MW) 
 
Table-1 
 
Capacity in Probability 
0   0 4

04 *0.98 *0.02 1.6000 7C E   

10   1 3
14 *0.98 *0.02 3.136 5C E   

20   2 2
24 *0.98 *0.02 2.305 3C E   

30   3 1
34 *0.98 *0.02 0.0753C   

40   4 0
44 *0.98 *0.02 0.9224C   

  
Considering (1 x 5 MW) 
 
Table-2 
 
Capacity in Probability 
0   0.0200 
10   0.9800 
 
Combining the (4*10 MW) and the (1*5 MW) units 
 
Table-3 
 
 

Capacity In Probability Prob. Figure 

0+0=0 1.6700 E -07 * 0.02 3.2000 E -09 

0+5=5 1.6700 E -07 * 0.98 1.5680 E -07 

10+0=10 3.1360 E -05 * 0.02 6.2720 E -07 

10+5=15 3.1360 E -05 * 0.98 3.0734 E -05 

20+0=20 2.3050 E -03 * 0.02 4.6100 E -05 

20+5=25 2.3050 E -03 * 0.98 2.2589 E -03 



30+0=30 0.0753           * 0.02 1.5060 E -03 

30+5=35 0.0753           * 0.98 0.0738 

40+0=40 0.9224           * 0.02 0.0184 

40+5=45 0.9224           * 0.98 0.9039 
 

 
   Reversing the table, we have 

Table-4 
 
 

Capacity 
In Outage Prob. Figure 

Cumulative 
Probability 

45 0 0.9039 1.0000 

40 5 0.0184 0.0960 

35 10 0.0738 0.0776 

30 15 1.5060 E -03 3.8430 E -03 

25 20 2.2589 E -03 2.3365 E -03 

20 25 4.6100 E -05 7.7620 E -05 

15 30 3.0734 E -05 3.1520 E -05 

10 35 6.2720 E -07 7.8720 E -07 

5 40 1.5680 E -07 1.6000 E -07 

0 45 3.2000 E -09 3.2000 E -09 
 
This is the required capacity outage table. However, the question paper asks for only the table 
relevant to the first four units. 
 

Table-5 (Same as Table-1) 
 

Capacity 
in Probability 
0 1.6000 E -07 
10 3.1360 E -05 
20 2.3050 E -03 
30 0.0753 
40 0.9244 

 
 
Reversing the table rows, we have 
 
 
 



Table-6 
 

Capacity 
in Outage Probability 

Cumulative 
probability 

40 0 0.9244 1.0000 
30 10 0.0753 0.0776 
20 20 2.3050 E -03 2.3355 E -03 
10 30 3.1360 E -05 3.1520 E -05 
0 40 1.6000 E -07 1.6000 E -07 

 
This is the required outage table. 
 
5. (a) Describe how transmission system reliability can be analyzed.   [10 Marks] 
 
Ref :         1) “Power System Planning”, R.L.Sullivan, McGraw-Hill, Pg--237 –1st part 

2)  “Power System Reliability, Safety and Management”, Balbir Singh Dhillon, Ann 
Arbor     Science, -Page 221, 223-2nd part 

 
 
 The probabilistic approach to reliability analysis is a powerful tool, to be used with discretion 
 The probabilistic approach to reliability analysis is a powerful tool, to be used with discretion 
It does not replace detailed analysis such as AC power flows. Probabilistic methods are used to seek out and 
identify transmission bottle-necks and trouble spots. Such methods provide additional insight, reduce 
computational time and most importantly, allow the planner to focus attention on areas most likely to create 
transmission problems. 

The determination of the transmission system reliability relies more on the probabilistic approach than a 
deterministic approach. It is commonly expressed in terms of two indices. 
 

1) LOLP ( Loss of load probability) 
2) e(DNS) – Expected value of (Demand Not served) 

 
These two methods enable the system planner to describe the capacity of each element (including generating 
units) in the system with a probability distribution function. The LOLP and the e(DNS) for each element is 
indicative of its relative role in determining the reliability of the system.  
To illustrate, if the reliability of a given transmission expansion plan is not sufficiently high, those elements 
most responsible for poor reliability can be identified. Transmission system reliability is generally not 
carried out in isolation; it often includes generating capacity reliability analysis as well. This is because, the 
outage characteristics of generating units clearly influence the loading of the system and hence its reliability. 
 
Basic philosophy-2 state model 
 
 
Each transmission element can be described adequately by two-state models and associated FOR’s (Forced 
outage rates). The treatment that follows adopts this two-state model throughout. In addition, to simulate 
real-life conditions, without having to go in for higher-order element models, we adopt a fluctuating 
environment as well. This is dealt with separately. 
 
Given that each element Vm, m=1,2,….,n in the system under study can reside in the “0” state with 
probability mq , in which it has no capacity and is hence out of service, or the “I” state, with probability mp , 

in which it has capacity mc  and is in service. Thus there will be 2n distinct capacity states iX , i=1,2,…., 2n . 
For instance, a three-bus system has five elements; two generators and three lines. Therefore, the system can 
reside in any of 52  = 32 different capacity states iX . Assumption : De-rated states are not considered. 
This will compound the problem. 
Obviously the upper and lower limiting states denoted by  



____

X  = (1,1,1,1,1) and   
___
X  = (0,0,0,0,0) 

Associated with each of the 2n  states is a probability f( iX ) that it will occur. For example, the probability f(

iX ) that the three-bus system will reside in the upper limiting state is
___
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Similarly, the probability that the system will reside in the lower limiting state would be 
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In general, the probability that the system will reside in any state Xi =(V1,V2,…..Vm) is 
 

1

( ) ( )
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f X f V
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   where f(Vm)= mp  if Vm=1 

 
where f(Vm)= mq  if Vm=0 
 

To summarize, we must decompose the set Xi, i=1,2,…., 2n  of system capacity states into states that are 
acceptable and states that are unacceptable. Unacceptable states are system capacity states Xi for which the 
load L, cannot be satisfied, either because of insufficient generation capacity or because of insufficient 
transmission capacity. Assuming that we can single out the unacceptable states, the system LOLP is defined 
by 
 

( )iLOLP f X   iX =all unacceptable states 

Similarly for each unacceptable state iX , which has a probability of occurrence ( )if X , the amount of load 

served is 
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ig  < L, then the e(DNS) would be the sum of the 

products of demand not served and the probability that the associated state occurred. 
 
e(DNS)  =  f(Xi) (L- ig ) iX =all unacceptable states  
 
Note that (L- ig ) is the amount of demand not served because the system capacity state iX  is unacceptable. 
 
DNS = (L- ig ) 
 
Basic philosophy- fluctuating environment  
 
The transmission system is subject to a wide variety of weather fluctuations. Hence its reliability evaluation 
depends on the analysis of a component (in a transmission system or otherwise) in a fluctuating 
environment. 
 



A transmission component installed outdoors is normally subject to a two-state alternating environment(i.e., 
normal and stormy weather). Due to this, component failure and repair rates(each normally assumed 
constant) vary from one weather state to another. To predict component reliability more accurately, the state 
space diagram of a Markov model is shown in Fig.5. 
 

 
    
 

nl  = Constant failure rate of the component operating in the normal environment 
 

sl  = Constant failure rate of the component operating in the stormy environment 
 

n  = Constant rate of the weather going from normal to stormy state 
 

s  = Constant rate of the weather going from stormy to normal state 
 

( )iP t  = ith state probability at time i=0,1,2,…. 
 
s = Laplace transform variable 
 
The system of differential equations associated with the above figure is 
 

0
0 2

( ) ( ) ( ) ( )nl n s
dP t P t P t

dt
      - Eqn. 5b1 

 

1
1 0 3

( ) ( ) ( ) ( )n nl s
dP t P t P t P t

dt
        - Eqn. 5b2 

 

2
2 0

( ) ( ) ( ) ( )sl s n
dP t P t P t

dt
      - Eqn. 5b3 

 



3
3 1 2

( ) ( ) ( ) ( )s n sl
dP t P t P t P t

dt
      - Eqn. 5b4 

 
At t=0, (0) 1oP   and 1 2 3(0) (0) (0) 0P P P    
 
Solving the above four equations using Laplace transforms, we get the state probability equations, 
 

0
( )( ) sl ssP s

A
  

  

 
Where [( )( ) ]nl n sl s n sA s s            
 

1

1
1( ) {[( ) ] }*[ ]s nl sl

s s nl
s

n sP s s ns A
s

s
s

  
  



 




   


 


 

2 ( ) nP s
A


  

1
3

( )( )
( )

n n sl

s s

P sP s
s A s

  
 

 
 

 

Laplace transforms of component reliability ( )cR t  in both weather conditions are 

0 2
( )( ) ( ) ( ) sl s n

c
sR s P s P s

A
    

    

The component mean time to failure (MTTF) is obtained by letting s-> 0 in the above equation. 

0
( )

( )( )
sl s n

cs
n sl s n s

Lim R s MTTF   
     

 
 

  
 

sl s n

nl sl n sl nl s

MTTF   
     

 


 
 

Using the above equation, the component mean failure rate under both weather conditions is given by 
 

1 nl sl n sl nl s

sl s nMTTF
     


  
 

 
 

 

 
   5.(b) Describe with a typical example the frequency and duration method.  [10 
Marks] 
 
Ref :    1)  “Reliability Modeling in Electric Power Systems”- J.Endrenyi, Wiley, Pg-53 
 [taken from Q.7(b)]-Theory 
 

2)  “Power System Reliability, Safety and Management”, Balbir Singh Dhillon, Ann 
Arbor     Science, -Page 200-Example 

 
The frequency of encountering state i, if , is defined as the expected number of stays in (or arrivals 
into, or departures from) i per unit time, computed over a long period. By this definition, the concept 
of frequency is associated with the long term behavior of the process describing the system. The 
mean duration of the stays in state i must also be computed over a long period of time. 
 In order to relate the frequency, probability, and mean duration of a given system state, the 
history of the system will be regarded as consisting of two alternating periods, the stays in i and the 



stays outside i. Thus the system is represented by a two-state process whose state-space diagram is 
shown in Fig.7.1.  Let the mean duration of the stays in state  i   be iT  and that of the stays outside I,  
be '

iT . 
Fig.- 7.1 Two-state process 

 

 
The mean cycle time , '

ci i iT T T   
From the definition of the state frequency, it follows that in the long run, if  equals the reciprocal of 
the mean cycle time. 

1
i

ci

f
T

  

Multiplying the above eqn. by iT , we have i
i

ci

Tp
T

  

When we analyze the long-term behavior of a component, its probability of being in the up-state is 
the ratio of the mean up-time to the sum of the mean up and down-times ( proportion of the time that 
the component is working). Similarly  its probability of being in the down-state is the ratio of the 
mean down-time to the sum of the mean up and down-times ( proportion of the time that the 
component is not working).  
 

i
i

ci

Tp
T

  

Hence i i if T p  where ip  represents the probability of being in state i. 
 
This is a fundamental equation which provides the relation between the three parameters. 
 
Next, the frequencies if , mean durations iT  and the transition rates in the system will be related. To 
begin with, the concept of the frequency of transfer from state i to state j  is introduced. This 
frequency ijf  is introduced. This frequency ijf  is defined as the expected number of direct transfers 
from i to j per unit time. 
We know that the intensity of transition from state i  to state j,  is defined as 

1( ) [ ( ) | ( ) ])
0ij

Lim
q t P X t t j X t i

t t
   




 
 

1 1

2

1 1 1

0
n n

i i i
i i

n n n

i i i i
i i i

x y b x

a x b x x y

 

  

 

 

 

  

 

Where X(t) is the random variable representing the system state at time t, and similarly for ( )X t t   

( )ijq t



 
 

1 [( ( ) ) ( ( ) )]
0ij

Lim
f P X t t j x t i

t t
    




   
 

     1 [ ( ) | ( ) ] [ ( ) ]
0

Lim
P X t t j x t i P X t i

t t
    




   
 
     ij ip      where ij  is the transition rate 

 
Thus,  ij  is essentially a conditional frequency, the condition being that the system resides in i. Now, 
from the definitions of  if  and ijf  it follows, that: 

.i ij
j i

f f


  

Hence, .i i ij
j i

f p 


   

We already know that  i i if T p   

Hence, 1
i

ij
j i

T







 

 
Thus it can be inferred that the mean duration of the stays in any given state equals the reciprocal of 
the total rate of departures from that state. All the state indices can now be computed from the 
transition rates that define a given system.  
 
Eg: 
Three independent, identical, repairable, active 500 MW generators form a parallel system. The constant 
failure and repair rates for each generator are  = 0.005 Failures/hr. and  = 0.01 repairs/hr. respectively. 
For 0 Mw power generation, calculate the system steady-state probability, frequency of encountering mean 
duration and mean cycle time. The system state space diagram is shown in Fig.5.2 
 

 
 
 
State 0 : Three generators operating 
 
State 1 : Two generators operating; one failed 
 
State 2 : One generator operating; two failed 
 
State 3 : All generators failed 
 
By using the Markov technique, the system of differential equations associated with Fig.5.2 is 



 

3 3{ (1, 2) (1) (1, 2). (1)}. { (1, 2) (2) (1,2). (2)}.s g c g c L g c g c LQ P P P P R P P P P Q          - 
Eqn.1 
 

1
1 0 2

( ) (2 ) ( ) ( ).3 ( ).2dP t P t P t P t
dt

         -Eqn.2 

 

2
2 3 1

( ) ( 2 ) ( ) ( ).3 ( ).2dP t P t P t P t
dt

         -Eqn.3 

 
 

3
3 2

( ) 3 ( ) ( ).dP t P t P t
dt

       -Eqn.4 

 
 
Where ( )i thP t i state probability at time t, for i=0,1,2,3 

At t=0, 0 (0) 1P   and 1 2 3(0) (0) (0) 0P P P    
 
For large t, the solution equations are 

3

0 3( )
P 

 



      -Eqn.5 

 
2

1 3

3
( )

P  
 




      -Eqn.6 

 
2

2 3

3
( )

P 
 




      -Eqn.7 

 
3

3 3( )
P 

 



      -Eqn.8 

 
 

From Eqn.8, the probability of )-MW power output is 
3

3 3( )
P 

 



= 0.0370 

The frequency of encountering State-3, 
3

3 3 33 . 3 .
( )

F P 
 

 
 


= 0.00111/Hr. -Eqn.9 

 
The mean cycle time between encountering a Markov state is 1T F   

Hence 3
3

1T
F

 =900.9009 Hrs. 

The mean residence time in a Markov state = 
1

)rT
Sumofoutgoingtransitionrates

   

Hence 3
1

3rT


 = Mean residence time in State 3 = 33.33 Hr. 

 
6. (a) Give a short note on two plant style load system.          [8 Marks] 
    
Ref :  1) “Power System Reliability Evaluation”-Roy Billinton, Gordon & Breach Science 
Publishers-Pg-220  



 
 Two plant style load systems are referred in the context of composite / bulk power system 

reliability. Here, the net effect of both the generating and transmission system is taken into 
consideration while arriving at the system reliability. This is achieved by using suitable 
reliability indices.  

 Two plant style load systems are generally of two types. 
 Two plant – single load system configuration 
 Two plant– two load system configuration 

 

 
 
 

 
 
 



Only the first configuration is dealt with in this solution. 
 

1 1 1 1( ). ( ).s s L s LQ Q L In R Q L Out Q     
 

For L1 In 

2 2 2 2( ). ( ).s s L s LQ Q L In R Q L Out Q     
 

For L1 In and For L2 In 
(2) (6) (2). (6)s g c g cQ P P P P    

3 3{ (1, 2) (1) (1, 2). (1)}. { (1, 2) (2) (1,2). (2)}.s g c g c L g c g c LQ P P P P R P P P P Q     
 

Where 
(1, 2)gP =probability of load curtailment for both generating plants. 

(1)cP  and (2)cP  are the curtailment probabilities for the transmission configurations shown 
below. 

 

 
 
For most practical cases, (1) (0)c cP P  and therefore (1, 2)s gQ P  
 

For L1 In and L2 Out 
 

3 3 3 3( ). ( ).s s L s LQ Q L In R Q L Out Q     

 
For L1 In and L2 Out and L3 In  

{ (1, 2) (3) (1, 2). (3)}s g c g cQ P P P P    

(3)cP is the curtailment probability for the system shown below. 

 
 



 
For L1 In and L2 Out and L3 Out 
  
(1) (4) (1). (4)s g c g cQ P P P P    

 
(4)cP  is obtained from  

 
(1)gP  represents the curtailment probability due to plant 1 supplying the entire load. 

For L1 In 

2 3 3[{ (1, 2) (1) (1, 2). (1)}. { (1, 2) (2) (1,2). (2)}. ]s L g c g c L g c g c LQ R P P P P R P P P P Q       + 

 2 3 3[{ (1, 2) (3) (1, 2). (3)}. { (1) (4) (1). (4)}. ]L g c g c L g c g c LQ P P P P R P P P P Q      

 
For L1 Out 

2 2 2 2( ). ( ).s s L s LQ Q L In R Q L Out Q     

 
For L1 Out and and L2 In 

3 3 3 3( ). ( ).s s L s LQ Q L In R Q L Out Q     

 
For L1 Out and L2 In and L3 In 
(1, 2) (5) (1, 2). (5)s g c g cQ P P P P    

 
For L1 Out and L2 In and L3 Out 
(2) (6) (2). (6)s g c g cQ P P P P    

Configurations 5 and 6 are shown below. 

 
 

 



For L1 Out and L2 In  

2 3 3 2

3 3

2 3

[{ (1, 2) (5) (1,2). (5)}. { (2) (6) (2). (6)}. ]

{ (1, 2) (1) (1,2). (1)}. { (1, 2) (2) (1, 2). (2)}.

[{ (1, 2) (5) (1,2). (5)}. { (2) (6) (2

s L g c g c L g c g c L L

s g c g c L g c g c L

L g c g c L g c g

Q R P P P P R P P P P Q Q

Q P P P P R P P P P Q

R P P P P R P P P

      

     

     3 2

3 3

3 3

3 3

). (6)}. ]

[ ( (1, 2) (1) (1, 2). (1)) ( (1,2) (2) (1, 2). (2))]

[ ( (1, 2) (3) (1, 2). (3) ( (1) (4) (1). (4))]
[ ( (1, 2) (5) (1, 2). (5)) ( (2) (6) (2

c L L

L g c g c L g c g c

L g c g c L g c g c

L g c g c L g c g

P Q Q

R P P P P Q P P P P

R P P P P Q P P P P
R P P P P Q P P P



    

    

     ). (6))]cP

 

3 3[{ (1, 2) (5) (1, 2). (5)}. { (2) (6) (2). (6)}. ]s g c g c L g c g c LQ P P P P R P P P P Q       

 
For L1 Out and and L2Out 

1.0sQ   

 
For L1 Out 

2 3 3 2[{ (1, 2) (5) (1,2). (5)}. { (2) (6) (2). (6)}. ]s L g c g c L g c g c L LQ R P P P P R P P P P Q Q        

 

1 2 3 3

2 3 3

1 2 3 3

{ [ { (1, 2) (1) (1,2). (1)} { (1,2) (2) (1,2). (2)}]}
{ [ { (1,2) (3) (1,2). (3)} { (1) (4) (1). (4)}]}

{ [ { (1, 2) (5) (1, 2). (5)} { (2)

s L L L g c g c L g c g c

L L g c g c L g c g c

L L L g c g c L g

Q R R R P P P P Q P P P P
Q R P P P P Q P P P P

Q R R P P P P Q P P

      

     

    2(6) (2). (6)} ]}c g c LP P Q 

Combining all the above, the complete expression for the system becomes 
 

1 2 3 3

2 3 3

1 2 3 3

{ [ { (1, 2) (1) (1,2). (1)} { (1,2) (2) (1,2). (2)}]}
{ [ { (1,2) (3) (1,2). (3)} { (1) (4) (1). (4)}]}

{ [ { (1, 2) (5) (1, 2). (5)} { (2)

s L L L g c g c L g c g c

L L g c g c L g c g c

L L L g c g c L g

Q R R R P P P P Q P P P P
Q R P P P P Q P P P P

Q R R P P P P Q P P

      

     

    2(6) (2). (6)} ]}c g c LP P Q 
 

6.(b) Two power systems are interconnected by a 20 MW tie-line. System A has three 
 20 MW generating units with forced outage rates of 10%.  System B has two 30 MW 
units with forced outage rates of 20%. Calculate the LOLE in system A for one-day 
period, given that the peak load in both system A and system B is 
 30 MW.          [12 Marks] 

 
Ref :         1)  “Power System Reliability Evaluation”-Roy Billinton, Gordon & Breach 
Science  Publishers-Pg-230 

 

 
 



Table-1 (System-A) 
 
     Capacity In  Probability 
 

0   0 3
03 *0.90 *0.10 1.0000 3C E   

    
20   1 2

13 *0.90 *0.10 0.0270C   
    
40   2 1

23 *0.90 *0.10 0.2430C   
    
60   3 0

33 *0.90 *0.10 0.7290C   
 
 

Table-2 (System-B) 
 

     Capacity In  Probability 
 
0   0 2

02 *0.80 *0.20 0.04C   
    
30   1 1

12 *0.80 *0.20 0.32C   
    
60   2 0

22 *0.80 *0.20 0.64C   
 
 
Table-1 is rearranged to form  

Table-3 (System-A) 
 

Capacity 
out Probability 
0 0.7290 
20 0.2430 
40 0.0270 
60 0.0010 

 
Likewise, Table-2  is rearranged to form  
 

Table-4 (System-B) 
 
 

Capacity 
out Probability 
0 0.64 
30 0.32 
60 0.04 

 
 
 
 
 
 



Table-5 
 

Probability of simultaneous outages in System-A & System-B 
 

Capacity out 

System-B 

0 30 60 

System
-A 

0 0.4466 0.2333 0.0292 

20 0.1555 0.0778 9.72 E -3 

40 0.0173 8.64 E -3 1.08 E -3 

60 6.4 E -4 3.2 E -4 4 E -5 
 

 The entries in the above table are obtained from Tables-3 & 4. 
Eg : [40,30] = 0.027 * 0.32 = 8.64 E -3 

 

Table-6 
Loss of load in System-A / Load loss array for System-A 
(since the question is for System-A only) 
 
System-A details 
Installed capacity =  3 x 20 MW 
Peak load            =  30 MW (Given in Question) 
Reserve capacity =  20 MW (assumed to be the highest rating) 
Tie capacity        =  20 MW (given)  

 
System-B details 
Installed capacity =  2 x 30 MW 
Peak load            =  30 MW (Given in Question) 
Reserve capacity =  30 MW (assumed to be the highest rating) 
Tie capacity        =  20 MW (given)  
 

 

Capacity out 
System-B 

0 30 60 

System
-A

 

0 0 0 0 

20 0 0 0 

40 10 20 20 

60 30 40 40 
 
 
 Entry details 
 
   



[ 0,  0] =  0(Outage) - 20(Reserve) - 10(From B) =  0 
 
  [20, 0] = 20(Outage) - 20(Reserve) - 0(From B) =  0 
 
  [20,30] = 20(Outage) - 20(Reserve) - 0(From B) =  0 
 
  [20,60] = 20(Outage) - 20(Reserve) - 10(From B) =  0 
 
  [40, 0] = 40(Outage) - 20(Reserve) - 10(From B) = 10 
 
  [40,30] = 40(Outage) - 20(Reserve) - 0(From B) = 20 
 
  [40,60] = 40(Outage) - 20(Reserve) - 0(From B) = 20 
 
  [60, 0] = 60(Outage) - 20(Reserve) - 10(From B) = 30 
 
  [60,30] = 60(Outage) - 20(Reserve) - 0(From B) = 40 
 
  [60,60] = 60(Outage) - 20(Reserve) - 0(From B) = 40 
 
 
Reproducing Table-6 below. We select only those entries which have non-zero load loss. Thus Table-7 is 
created. 
 

Capacity out 
System-B 

0 30 60 

System
-A

 

0 0 0 0 

20 0 0 0 

40 10 20 20 

60 30 40 40 
 
 

Table-7 (System-A) 
 

Capacity out 
System-B 

0 30 60 

System
-A

 

0       

20       

40 0.0173 8.64 E -3 
1.08 E -
3 

60 6.4 E -4 3.2 E -4 4 E -5 
 
 
 
 



Therefore, expected load loss probability = 
 Prob. = 0.0173 + 8.64 E -3 + 1.08 E -3 + 6.4 E -4 + 3.2 E -4 + 4 E -5 
 Prob. =  0.02802 LOLE ( Loss of load expectation) 
7. Write short notes on the following. 
 

(a) Loss of load approach         [7 Marks] 
(b) Frequency and duration approach       [7 Marks] 
(c) Multiple bridge equivalents        [6 Marks] 

 
               [5 x 20 = 100 Marks] 
7A Loss of load approach 
Ref :  1) “Power System Reliability Evaluation”-Roy Billinton, Gordon & Breach Science 
Publishers-Pg-104,  
          2) “Reliability Modeling in Electric Power Systems”- J.Endrenyi, Wiley,Pg-120, 
          3) “Power System Reliability, Safety and Management”, Balbir Singh Dhillon, Ann Arbor     
Science, Page-202 
 
In this approach, the applicable system capacity outage probability table is combined with the system 
characteristics to give an expected risk of loss-of-load. The units are in days or hours depending upon 
the load characteristics used.  Prior to combining the outage probability table, the difference between 
the terms “capacity outage” and “loss of load”. The term “capacity outage” indicates a loss of 
generation which may or may not result in a loss of load. This condition depends upon the generating 
capacity reserve margin and the system load level. However, “loss of load” occurs only when the 
capability of the generating capacity remaining in service is exceeded by the system load level.  
A typical system load capacity relationship is shown in Fig.23 
 

Fig. 23  Relationship between Load, Capacity and Reserve 
 

 
 
 

Ok = Magnitude of the k th outage in the system capacity probability table 
 
Pk = Probability of an outage of capacity equal to Ok. 



 
tk = No. of times , units in the selected interval that an outage magnitude Ok would cause a 
loss of load. 
A particular capacity outage will contribute to the system expected load loss by an amount 
equal to the product of the probability of existence of the particular outage and the number of 
time units in the selected interval that loss of load would occur. (If such a capacity outage 
were to occur.) 
 
From Fig. 23, it is evident that any capacity outage less than the reserve will not contribute to 
the system expected load loss. Outages of capacity in excess of the reserve will result in 
varying numbers of time units during which load loss could occur. This is expressed 

mathematically as 
1

( )
n

k k
k

E t P t Timeunits


  

1
( )

n

k k
k

E t P t Timeunits


  

If the load characteristics in the above figure is the load duration curve, the loss of load 
expectance is in hours. If a daily peak load variation curve is used, the loss of load expectancy is in 
days for the period of study. 
 
7B Frequency and duration approach  
Ref :    1)  “Reliability Modeling in Electric Power Systems”- J.Endrenyi, Wiley, Pg-53 
 
 
State frequencies and durations 
 
The frequency of encountering state i, if , is defined as the expected number of stays in (or arrivals 
into, or departures from) i per unit time, computed over a long period. By this definition, the concept 
of frequency is associated with the long term behavior of the process describing the system. The 
mean duration of the stays in state i must also be computed over a long period of time. 
 In order to relate the frequency, probability, and mean duration of a given system state, the 
history of the system will be regarded as consisting of two alternating periods, the stays in i and the 
stays outside i. Thus the system is represented by a two-state process whose state-space diagram is 
shown in Fig.dddd.  Let the mean duration of the stays in state  i   be iT  and that of the stays outside I,  
be '

iT . 
Fig.- 7.1 Two-state process 

 

 
The mean cycle time , '

ci i iT T T   
From the definition of the state frequency, it follows that in the long run, if  equals the reciprocal of 
the mean cycle time. 

1
i

ci

f
T

  

Multiplying the above eqn. by iT , we have i
i

ci

Tp
T

  



When we analyze the long-term behavior of a component, its probability of being in the up-state is 
the ratio of the mean up-time to the sum of the mean up and down-times ( proportion of the time that 
the component is working). Similarly  its probability of being in the down-state is the ratio of the 
mean down-time to the sum of the mean up and down-times ( proportion of the time that the 
component is not working).  
 

i
i

ci

Tp
T

  

Hence i i if T p  where ip  represents the probability of being in state i. 
 
This is a fundamental equation which provides the relation between the three parameters. 
 
Next, the frequencies if , mean durations iT  and the transition rates in the system will be related. To 
begin with, the concept of the frequency of transfer from state i to state j  is introduced. This 
frequency ijf  is introduced. This frequency ijf  is defined as the expected number of direct transfers 
from i to j per unit time. 
We know that the intensity of transition from state i  to state j, ( )ijq t  is defined as 

1( ) [ ( ) | ( ) ])
0ij

Lim
q t P X t t j X t i

t t
   




 
 

 
Where X(t) is the random variable representing the system state at time t, and similarly for ( )X t t   
 

1 [( ( ) ) ( ( ) )]
0ij

Lim
f P X t t j x t i

t t
    




   
 

     1 [ ( ) | ( ) ] [ ( ) ]
0

Lim
P X t t j x t i P X t i

t t
    




   
 
     ij ip      where ij  is the transition rate 

 
Thus,  ij  is essentially a conditional frequency, the condition being that the system resides in i. Now, 
from the definitions of  if  and ijf  it follows, that: 

.i ij
j i

f f


  

Hence, .i i ij
j i

f p 


   

We already know that  i i if T p   

Hence, 1
i

ij
j i

T







 

 
Thus it can be inferred that the mean duration of the stays in any given state equals the reciprocal of 
the total rate of departures from that state. All the state indices can now be computed from the 
transition rates that define a given system.  
 

 
 
 
 



(c) Multiple bridge equivalents       [6 Marks] 
 
Ref :  1) “Power System Reliability Evaluation”-Roy Billinton, Gordon & Breach Science 
Publishers-Pg-266  
 
The concept of bridge equivalents occurs in the context of DC transmission lines. The bridge is a 
fully controlled one. It has repairable elements (SCR devices). 
 
The state space diagram of a single bridge is shown below. 

 
The above can be approximated by an equivalent model. 

 
 
  In a multiple bridge, two or more bridges are involved. Each has its own set of repairable elements. 
In the case of two bridges, both are required for system success. 
Then the equivalent state space representation is a binary state model similar to the one obtained for a 
single bridge. 

Equivalent model for two bridges 

 
 
In addition, the state space diagram for two bridges are represented with derating. 

 


