G 1872

(Pages : 2)

Reg.	No.	 	
Nome		a land	

B.TECH. DEGREE EXAMINATION, MAY 2012

Fourth Semester

Branch : Computer Science and Engineering / Information Technology CS 010 406 / IT 010 404—THEORY OF COMPUTATION (CS, IT)

(Regular-2010 Admissions)

Time : Three Hours

Maximum: 100 Marks

Part A

Answer all questions. Each question carries 3 marks.

1. Explain the principle of Mathematical Induction.

2. Differentiate between Deterministic and Non-deterministic Finite automata.

- 3. Define instantaneous description of push down automata.
- 4. Design a TM that accepts the language of odd integers written in binary.
- 5. What is meant by halting problem ?

$(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions. Each question carries 5 marks.

- 6. Prove that all natural numbers of the form $n^3 + 3n$ are divisible by 3 using principle of induction.
- 7. Construct an NFA equivalent to the regular expression (0 + 1)(00 + 11)(0 + 1).
- 8. State and prove the pumping lemma.
- 9. Describe the Turing Machine which shifts a string w containing no blanks to one cell to the left.
- 10. Explain briefly NP hard and NP complete problems.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer either (a) or (b) from each question. Each full question carries 12 marks.

11. (a) With an example explain Primitive and partial recursive functions.

Or

(b) Define Diagonalization principle. Prove that the set is uncountable.

Turn over

2

12. (a) Prove that if a language C is accepted by some NFA, iff it is accepted by some DFA.

Or

(b) Show that the language $\{a^n e^n = i^L, i \ge 1\}$ is not regular.

15.

13. (a) Obtain a CFG to generate a language of all non-palindrome over the alphabet $\Sigma = \{a, b\}$. Trace for a string of acceptable and non-acceptance using Left most derivation.

Or

- (b) Show that any CFL without ε can be generated by an equivalent grammar in Chomsky Normal Form.
- 14. (a) Is the language α(G) = {abc / n≥0} accepted by the Turing machine ? If so, construct the Turing machine for the same and trace for a two strings, one for acceptance and other for rejection.

Or

(b)	(i)	Explain briefly the church Turing Thesis.	(4 marks)
	(ii)	Explain :	
	ў — . 	1 A random access TM.	(4 marks)
		2 Non-deterministic TM.	(4 marks)
(a)	Wri	ite the characteristic features of p-completeness. Explain briefly with an e	xample.
		Or	
			(C 1)

(6 marks)	Distinguish P, NP, NP-Hard and NP-complete problems.	(i)	(b)
(6 marks)	Explain any two applications of NP-complete problems.		
$5 \times 12 = 60$ marks			