F 3049

(Pages : 3)

Reg.	Nossessessessessessessessessesses
3.7	
Nam	C

B.TECH. DEGREE EXAMINATION, DECEMBER 2012

Fifth Semester

Branch : Computer Science and Engineering/Information Technology EN 010 501 B-ENGINEERING MATHEMATICS-IV (CS, IT)

(Regular-New Scheme)

Time : Three Hours

Maximum: 100 Marks

Part A

Answer all questions briefly. Each question carries 3 marks.

- 1. Evaluate $\Delta x \log x$, the interval of differencing being h.
- 2. Find the *z*-transform of $(t + T) e^{-(t+T)}$.
- 3. Find the coefficient of X^{16} in $(1 + X^4 + X^8)^{10}$.
- 4. Find p such that the function f(z) expressed in polar co-ordinates as $f(z) = r^2 \cos 2\theta + ir^2 \sin p\theta$ is analytic.
- 5. State and explain Little's theorem.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions. Each question carries 5 marks.

6. Express $f(u) = u^4 - 3u^2 + 2u + 6$ in terms of factorial polynomials. Hence show that $\Delta^4 f(u) = 24$.

7. Given $Z(u_n) = \frac{2z^2 + 3z + 4}{(z-3)^3}$, |z| > 3. Show that $u_1 = 2, u_2 = 21, u_3 = 139$.

8. Solve the recurrence relation :

 $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0, F_1 = 1$.

- 9. Evaluate $\oint_c \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2 (z-2)} dz$, where C is the circle |z| = 3.
- 10. Derive an expression for the average queue occupancy and average time delay through the queue for state dependent queues.

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

2

Answer any **one** full question from each module. Each full question carries 12 marks.

Module 1

11. Distance in nautical miles of the visible horizon for given heights in meters above the surface of the earth are given by the following table :

x (heights)	;	100	150	200	250	300	350	400
y (distance)	:	12	15	21	28	36	50	71

Find the value of *y* when x = 275 meters.

Or

12. (a) Using Simpson's rule, taking five ordinates, to find an approximate value of $\int_{1}^{2} \sqrt{\left(x - \frac{1}{x}\right)} dx$ to two decimal places.

(b) Evaluate $\int_{0}^{1} \left(\frac{dx}{1+x}\right)$ correct to 3 decimals by Trapezoidal rule with h = 0.5, 0.25 and 0.125.

Module 2

13. (a) Find the convolution of
$$\cos \frac{n\pi}{2} * \sin \frac{n\pi}{2}$$
.

(b) Find the inverse Z-transform of $\frac{4z^{-1}}{(1-z^{-1})^2}$.

Or

14. (a) Solve $y_{n+3} + y_{n+2} - 8y_{n+1} - 12y_n = 0$, $y_0 = 1$, $y_1 = y_2 = 0$.

(b) Show that $z(\cosh n\theta) = \frac{z(z - \cosh \theta)}{z^2 - 2z \cosh \theta + 1}$.

ť

Module 3

15. (a) Find discrete numeric function corresponding to the generating function $A(z) = \frac{2}{1-4z^2}$.

Or

(b) Solve the recurrence relation $a_r = a_{r-1} + a_{r-2}$, $r \ge 2$ and $a_0 = 1$, $a_1 = 1$.

(a) Express the generating function for the sequence 1, 0, 1, 0, 1, 0, ..., in a simpler form.
(b) Find a particular solution of a_r - 2a_{r-1} = 7r.

1.

Module 4

3

17. (a) Expand
$$\frac{1}{z^2 - 4z + 3}$$
, for $1 < |z| < 3$ in Laurent's series.

(b) If
$$f(z)$$
 is an analytic function of z , prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left| Rf(z) \right|^2 = 2 \left| f'(z) \right|^2$

18. (a) Show that the function $f(z) = \frac{x^2 y^3 (x+iy)}{x^6 + y^{10}}$, $z \neq 0$, f(0) = 0, is not analytic at the origin even

though it satisfies Cauchy-Riemann equations at the origin.

b) Evaluate by contour integration
$$\int_{0}^{2\pi} \frac{d\theta}{(5-3\cos\theta)^2}.$$

(

î

Module 5

19. Customers arrive in a hotel at a rate of 5 per minute and wait to receive their order for an average of 5 minutes. Customers eat in the hotel with probability 0.5 and carry out their order without eating with probability 0.5. A meal requires an average of 20 minutes. What is the average number of customers in the hotel ?

Or

20. Derive the expression for the average number of customer's queue in an M/M/1 queuing system, from first principles.

 $(5 \times 12 = 60 \text{ marks})$